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Geometry representations in production Monte Carlo radiation transport 
codes used for linear-transport simulations are traditionally limited to 
combinatorial geometry (CG) topologies. While CG representations of 
input geometries are efficient to query, they are difficult to construct. In 
the Integrated-TIGER-Series (ITS) Monte Carlo code suite, a new 
approach for radiation transport geometry engines has been implemented 
that allows for Computer Aided Design (CAD), facetted approximations, 
and other geometry types to simultaneously define an input geometry. 
These techniques effectively allow the user to trade off problem setup time 
and computational time. For instance, radiation transport on CAD 
geometries can be 100 times slower than transport on comparable CG 
geometries. However, since linear-transport Monte Carlo can be solved 
with high parallel efficiency on massively-parallel computers, CAD 
representations of complex systems can be analyzed.

Introduction
Geometry representations in production Monte Carlo codes that are used for linear 

transport are traditionally limited to combinatorial geometry (CG) topologies (Nelson and 
Jenkins, 1988). In CG models, objects are described through Boolean operations on a set 
of simple primitives (volumes or surfaces). Such has been the case with Sandia’s ITS or 
the Integrated TIGER Series code suite (Halbleib, et. al., 1992). While CG 
representations of input geometries are efficient to query, they are difficult to construct 
for model complexities required by engineers.  Engineers typically create their designs 
using CAD software, where objects are described through a boundary representation 
(volumes are bounded by faces, which are bounded by edges, which are bounded by 
vertices). Hence, a path from CAD geometry into Monte Carlo codes is desirable to avoid 
the problem setup difficulties of re-creating a geometry in CG. Moreover, since engineers 



frequently iterate on their designs, any path from CAD into a Monte Carlo code should 
not be cumbersome, but should accommodate rapid setup. An automated, or near 
automated, approach is desirable.

There are two general approaches to solving this problem: (1) Translate the model 
into combinatorial geometry, the format that Monte Carlo codes understand, or (2) 
Modify the Monte Carlo code to understand new geometry formats, into which CAD can 
be automatically translated. Many of the techniques that are being explored are associated 
with related issues of visualizing geometry and results from Monte Carlo calculations 
(Van Riper, 2004 and Schwarz, et. al., 2004).

 Several research activities are underway that translate a geometry model into a CG 
representation. The TopAct code (Manson, 2004) has been written to convert CAD 
geometry into the surface and zone representations suitable for use in MCNP. In TopAct, 
a pre-processor developed by Technosoft, Inc. extracts analytical surface data from CAD 
data in STEP format (a standard recognized by most commercial CAD software). A 
mathematical algorithm is being developed to create semi-algebraic surface 
representations of CAD geometry suitable for MCNP (Tsige-Tamirat and Fischer, 2004). 
These approaches are still under active development, they are not yet generally available 
for users, and have not yet been adequately demonstrated for translating general CAD 
geometries into CG, particularly for spline surfaces.

Most CAD software includes built-in meshing utilities that can render CAD geometry 
into an unstructured mesh of tetrahedral or hexahedral elements. Hence, there have been 
various attempts to utilize meshed geometry with Monte Carlo. Brunner (Brunner et al. 
2005) discusses a few codes using unstructured meshes especially designed to attempt to 
handle domain decomposition (needed to address possibly vast amounts of memory used) 
and the associated parallelization inefficiency. The medical-physics code PEREGRINE 
(Hartmann-Siantar et al. 1997) runs on a structured mesh ("voxels" appropriate for input 
based on patient CAT-scans) with special logic ("delta-scattering", which works better 
when there is not an enormous difference in mean-free-paths between materials used - 
such as tissue and bone) to mitigate the considerable cost involved with photons 
streaming across many mesh-cell boundaries. It is also possible to convert each cell of an 
unstructured mesh into CG zones to directly use with the CG-based Monte Carlo codes. 
However, our codes are not optimized in their data structures for representing such 
geometries and lack the special logic to efficiently accommodate streaming across many 
boundaries or domain decomposition - which would require a significant code 
restructure.

We have thus avoided meshing the entire problem which brings with it greatly 
increased memory (which may lead to complications such as handling domain 
decomposition for parallelization) and unnecessary (for radiation transport) internal 
boundary crossings. Even when we are required to calculate spatial distributions in parts 
(hence need a mesh-like structure), we utilize what we call "subzone" structures which 
are boundaries only seen for purposes of tallying spatial distributions. The subzone 
boundaries are not seen as the particles are tracked nor do they create any approximation 
to the surfaces of the zones (as a mesh typically does on curved surfaces). Since they are 
regular, in a local body-based coordinate system (cylindrical, spherical or Cartesian), they 



require minimal memory to be fully described. Furthermore, they are usually restricted to 
regions of interest, so entire geometries are rarely subzoned for such tallies.

There are significant issues associated with use of CAD geometries (meshed or not) 
for particle transport, especially worrisome for designs that are rapidly evolving. We will 
refer to them as Design to Analysis (D2A) issues:

The CAD geometry has to be “clean”: "air-tight" (else may need to be "healed") 
without significant overlaps. The size of acceptable "small" overlaps is clearly 
application dependent.

Material identifiers need to be assigned to CAD zones and need to be conveyed to the 
representation (which may be lost if translated from one version of CAD to 
another, or meshed - if they were assigned to the original CAD zones in the 
first place).

For complex models, very numerous but trivial CAD details (i.e. those which may not 
be needed for a particular analysis) may make the model unusable (i.e. the 
model is so large it cannot be automatically integrity checked). This can be 
aggravated for meshing, where even a small number of such features may 
give rise to a needlessly large (for radiation transport) mesh. The analyst may 
need to iterate with the designer to create the appropriate level of detail (and 
avoid troublesome details for meshing).

For very complex systems, subassemblies are often designed separately, then "fit" 
together (again, this is the overlap problem, which in this case cannot be 
detected by looking at individual subassemblies). With meshes, care must be 
taken for curved boundaries between two materials where a possibly different 
effective facetization on either side of the boundary may again aggravate the 
overlap problem.

 Our approach (to make use of CAD geometry designs) is to directly transport on 
CAD geometries (Franke et al., 2001 and Tautges et al., 2004). This has been 
implemented in Version 5.0 of ITS (Franke et. al., 2004) and will be discussed in the next 
sections. The D2A issues listed are still of concern with this approach, but the difficulties 
peculiar to meshing are avoided. In particular, we will discuss how overlaps in the CAD 
geometry are detected and treated in ITS. However, CAD-based transport does have a 
significant drawback. It is significantly slower than CG-based transport on comparable 
geometries (by factors of 10-100). 

Another approach that is being investigated is transport on facetted representations of 
the geometry (Martin and Warren, 2004 and Jordan, 2004). While this approach has 
similar D2A drawbacks (for radiation transport) of a volumetric mesh, it does have 
reduced memory requirements (by avoiding the internal mesh boundaries) and may allow 
for Monte Carlo transport without domain decomposition. The generation of facetted 
surfaces is a common technique in visualization. Hence, many utilities exist to 
automatically generate a facetted geometry.

We allow, or plan to allow CG, CAD, and facet representations in ITS. Moreover, we 
are enabling our transport algorithms for models that are hybrid combinations of any of 
these representations. For example, a hybrid CAD-facet representation can be used to 
reduce computational cost associated with transporting particles across spline surfaces. 



Transport across such surfaces can be factors of 10-100 times slower than transport 
across the CAD boundary representations that are not splines. Hence, it is beneficial to 
allow the replacement of spline surfaces with facetted representations in the Monte Carlo 
geometry. Visualization utilities can automatically generate models with selected 
facetization that is needed for such analysis.

ITS Version 5.0
In ITS Version 5.0, a representation-independent query engine has been developed 

that allows for Computer Aided Design (CAD) and facetted approximation to 
simultaneously define an input geometry. ITS is now used routinely for transport on CAD 
geometries, and the efficiency and accuracy of facetted and mesh approximations are 
being investigated. ITS5 has the ability to track particles on CAD geometry in the ACIS 
(Spatial,  2005) format. Using this feature frees the analyst from the chore of rebuilding 
geometries already available in a CAD format. This can significantly shorten the time 
required to perform an analysis on a complicated system. The use of CAD geometry 
representations trades geometry setup time for computational cost. That is, creating the 
geometric model for a calculation requires much less analyst time while performing the 
calculation requires more processor-hours. Particle tracking on CAD geometries requires 
more CPU time due to the added computation necessary to handle the CAD geometry 
representation (volumes bounded by finite surfaces, instead of volumes described by 
Boolean combinations of simple primitives), especially if the CAD model uses more 
general surfaces which are non-analytic. In the end, the turn around time of an analysis is 
reduced significantly if a CAD model of the geometry already exists. Most popular CAD 
formats can be converted to the ACIS format.

Improvements in CAD Geometry Particle Tracking Efficiency
There are two aspects of tracking on CAD geometry models which make it less 

efficient than tracking on CG models: (1) the intersections of rays with faces (trimmed 
surfaces) are more computationally expensive since there is no simple Boolean logic 
underlying the zone description, and (2) the space between objects is typically not 
defined. The first item we more or less cannot avoid - although we can try to minimize 
the calls to CAD libraries. One way to deal with the second item is to require that space 
to be defined - i.e. create a zone as the complement of all the other objects (Tautges et al. 
2004), though this may result in a very complicated description (tracking on which may 
become computationally expensive). Our approach has been to allow the existence of 
such a zone (we shall call this the "special void" zone), conceptually defined as not being 
within any of the CAD parts, along with an efficiency mechanism (in particular a type of 
overlaying grid). An efficiency mechanism is needed for two related geometry queries: 
(1) determining location within this special void region without interrogating every zone 
in the problem, and (2) determining which surface will be intersected next from within 
this special void zone without interrogating every surface in the problem.

Our first efficiency grid simply divided space up uniformly along Cartesian axes to 
form cells. These cells were populated with any zone that was within or intersected the 



cell. This scheme limited the number of zones (and by their association, surfaces) to be 
examined for queries related to the special void zone. For example, location within the 
special void region was determined by only examining all zones within one cell. Voxel-
walk logic was included for cases when the "next surface" to be intersected was not 
located within the same cell as the particle. However, for some applications with small 
regions of large numbers of surfaces, a uniform grid was not very effective.

As part of a restructuring of the geometry tracking engine (Martin and Warren, 2004), 
a new type of efficiency grid was proposed and is being investigated. This new grid is a 
kind of Binary Space Partitioning (BSP) tree. BSP's are a set of spatial data structures 
that subdivide space to achieve greater efficiency in ray firing applications. The type of 
BSP tree being investigated is a K-dimensional binary tree, or KD tree, where all of the 
spatial subdividing planes are aligned with the axes. One of the advantages of the KD tree 
is that it adapts to the model by refining itself near points of high geometric detail. 
Another advantage is that subdivisions are selected based on a cost function that can be 
altered to fit a particular class of problems. Figure 1 illustrates the spatial partitioning 
represented by a KD tree developed for a complex geometry model. 

Figure 1. The Spatial Partitioning Represented By a KD Tree Developed for the 
Complex Model.

The cells of the KD tree are populated with faces which are within or intersect the 
cell. The two queries for the special void zone are more related, since location within the 
special void zone is determined by examining the "next surface" which would be 
intersected, then deciding if the particle is inside or outside the associated zone to that 
surface. If it is outside, then it is inside the special void zone.

The Problem with Overlapping Geometry
Figure 2 illustrates a simple overlap (labeled C) of zone B and zone D. Zone A is the 

special void zone. A particle being tracked is located at the black dot in zone B, moving 
in direction indicated by the arrow. For a given application, it may be that region C is so 
small it would not affect the results if that region were considered as part of zone B or 
part of zone D. With our simple uniform spatial grid, the code identified region C as part 
of zone B in this case. It would identify it as part of zone D for a particle in zone D 
moving towards zone B. 

Figure 2. The overlap of Zone B with Zone D is indicated as region C.



However, with the newer KD tree and the alternate logic which determines location 
within the special void zone, a problem occurs. Without special logic, it would identify 
the overlap region C as part of zone D - which is not the problem. However, having made 
that association, the code determines the black dot (in zone B) is outside zone D, which is 
the definition of being inside the special void region. The danger is that it decides the 
black dot is inside the special void region, and will stream to region C. To avoid this 
potentially disastrous situation, whenever the code decides a point is located inside the 
special void region (hence outside some zone), it performs the query a second time, but 
now ignoring any surfaces associated with the zone it identified as being outside. This is 
not so terribly inefficient, since the code has stored previous intersections for surfaces it 
may have already interrogated. Hence, with this special logic, the code will associate the 
overlap region C with zone B (since zone D is being ignored for this second query), and 
will properly identify the black dot as being within zone B. The code recognizes this as 
an overlap, and prints out a diagnostic as such (essentially once per pair of discovered 
overlapping zones). While the code robustly handles such simple overlaps, multiple 
overlaps could still potentially cause trouble (i.e. erroneous results), so users should strive 
to obtain clean CAD geometries if the code identifies overlaps.

Use of Facet-Based and Other Geometry Representations
One of the main advantages of Martin’s geometry tracking engine is its modular 

nature. The modular nature of the engine allows the addition of other geometry 
representations besides CG and CAD (in ACIS format) without a wholesale rewrite of 
ITS. One of the alternate geometry representations being investigated is facet-based 
geometry. As mentioned above, tracking on CAD geometry is much slower than on CG 
geometry. This is especially true if the CAD geometry contains spline surfaces, which are 
common in CAD geometry. An advantage of facet-based geometries is that there are no 
spline surfaces—there are only plane surfaces. However, many plane surfaces may be 
needed to adequately represent any given surface. A facet-based geometry ability is 
already present in ITS5 and investigations are currently underway are to determine if 
facet-based surface geometry will be efficient enough and at the same time accurate 
enough to replace some or all CAD bodies in a model. Figure 3 illustrates a test of the 
facet-based geometry particle tracking logic in ITS. The facetted bowl has 1616 faces. 
The CAD and CG geometries produced identical results for the particular calculation. 
The facet-based geometry calculation produced nearly identical results and as the 
resolution of the facets was refined the results continued to improve in comparison with 
the other three. The effect of splines on tracking time is clear.



Geometry FeatureTime (ms/history)CAD Splines64.3CAD No Splines0.65Facets0.22 
CG 0.0066Figure 3. Comparison of Monte Carlo run times on a bowl model CAD 
geometry with and without splines, facet-based geometry, and CG geometry.

Another advantage of Martin’s geometry tracking engine is that particles can be tracked 
on different geometry representations in a single calculation. In particular, the tracking 
engine resolves the issue of gaps and overlaps associated with stitching disparate 
geometries together. If there is a simple overlap, the code chooses one of the parts when 
there is an overlap.  Gaps are treated as void.

This means that ITS5 can track particles through a geometry that consists of CG 
zones, CAD zones, and facetted-body zones. Thus it may be possible to optimize a given 
model for the most efficient representation or combination of representations.

CAD Subzoning
For extracting spatial differential data, ITS5 has extended automated subzoning 

capabilities for the combinatorial geometry (CG) and CAD versions. The 3D code can 
now handle more single-body zone types, multiple-body zones, and can overlay any of 
the subzone structures on any given zone. This is called non-conformal subzoning as the 
subzone entity does not conform to the shape of the zone. Subzones that are outside of 
the zone are identified and no tallying is performed in those subzones. All subzoning 
schemes also have automatic subzone volume calculations. One exception to subzone 
volume calculation is for non-conformal subzoning on CG geometry. In this case those 
subzones that are identified as outside the zone (based on the centroid of the subzone) are 
given a volume of zero. Some of these subzones actually have some volume inside the 
zone. A stochastic volume calculation can be used to determine the fractional volumes of 
subzones on the boundaries of zones and the subzone volumes can be specified in the 
input to override automatically calculated volumes. Subzoning of zones in CAD 
geometries is of the overlay type by default, see Figure 4 for an example. In CAD-based 
transport, the CAD routines calculate volumes for all subzones using geometric 
intersection logic.

Subzoning is available for any geometry brought into ITS (hence it is currently 
available for facet geometry).  But special logic is needed for precise volume calculation 
with subzone overlays.  That special logic is in place for CAD geometry and is being 
developed for facet geometry. 

Figure 4. Regular subzone overlay of CAD geometry. 



Summary
Sandia’s production Monte Carlo code for electron-photon transport, ITS, has been 

adapted for flexible utilization of CG, CAD, and facetted geometries. No one method is 
superior in all circumstances. To take advantage of the strengths and weaknesses of each 
approach, ITS can also transport on hybrid models that combine any or all of these 
methods.
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